CALCULATION OF THE CRITICAL CONDITIONS
FOR A THERMAL EXPLOSION IN AN
INHOMOGENEOUS MEDIUM BY A METHOD

OF INTEGRAL RELATIONS
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We develop a method of integral relations for problems of thermal explosmn We {ind the condi-
tion for ignition of a turbulent reactive stream in a pipe.

The critical values -of the parameters 6 = 6« (the critical condition for thermal explosion) at which the
solution of the boundary-value problem

£ dE"f €) db/dE) + 89 (8) = O; 18}
E=0 db/dE=0; E=1 db/df = —Bi6; 2)
@ (8) = exp (6), : @)

ceases to exist have been determined analytically (for f(£) = 1) for a number of special cases [1, 2]. To find
O« in general form one can use numerical methods or approximate estimates [1, 3, 4].

Among the approximate methods for estimating 6, (n, Bi)we may note Khudaev's method [5], which yields
a reliable upper bound. In using this method, we must find the first eigenvalue of the appropriate boundary-
value problem, which in the general case of an inhomogeneous medium f(§) # 1isnotalways possible, If f(¢) # 1,
severe difficulties also arise in the use of the variational method [6].

The most acceptable method for estimating 6« in an inhomogeneous medium is probably the method of
integral relations {7], which has been used previously [8] for finding critical conditions., The accuracy of this
method is determined to a great extent by a successful choice of the total profile of temperature.

In the present study we propose the development of a method of integral relations for problems in ther-
mal explosion.* TFirst, we give a method for choosing the temperature trial profile. Second, we consider a
procedure for obtaining integral relations which is less sensitive to errors in the choice of the trial function

than those used in [8]. ‘

To illustrate and confirm the method, we use the example of a classical problem of thermal explosion
in a homogeneous medium. For convenience in calculations, instead of (3) we shall hereafter use the Gray —
Harper approximation [9]:

o (0) =exp(@8) =~ 1+ yg+ 0% 4)
p=e—2~0.72.

1. Determination of the critical conditions for f(£) = 1. As the trial profile, we select the solution of
the heat-conduction equation with a constant source:
Ed(Ed0/dE) - 6=0
with the boundary conditions (2). We write this solution in the form
*In the article we use D. A, Frank-Kamenetskii's dimensionless variables: n reflects the geometry of the

vessel, the function f(¢) reflects the variation of the thermal diffusivity as a function of the coordinate, and
¢(9) reflects the variation of the rate of the chemical reaction as a function of the dimensionless temperature 8 .
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TABLE 1, Comparison of the Exact Values of the Critical
Parameters of a Thermal Explosion with the Approximate

Values
Bges o .
n 84 exact value 8+, calc. from Ogs, exact 0 cale
9 value from (10)
0 0,88 0,865 1,2 1,17
1 2 2,02 1,386 1,36
2 3,32 3,49 1,6 1,55
9=60(1“—a§2), (5)
where
a = Bi/(Bi - 2). {6

In (5) 6 is the maximum temperature at the center of the vessel, which depends on the intensity of the scurce.

We set up the necessary integral relation. To do this, making use of the symmetry condition (2), we
write the heat flux at the point y in the form

y"de/dy = — § | @O Fd. {7
0

The factor y® takes account of the variation in the surface penetrated by the flux as y varies. Now we find the
mean integral value of the heat fluxf in the interval from 0 to 1 and, making use of the boundary condition (2)
and also of formulas (4), (5), we find, after some simple calculations, that

aBy/8 = (1 + 1)7t - YBa6y + 5,00, (8)
where

Br =05+ 1)t—a(n+2)[2(n+ 3) (n+ 4)],
Sn = 0.5 (n+ 1)t —a(n 4 2)/[(n +3) (n +41 + o2 (n +2)/[(2 (n +-5) (n +6)].

The critical conditions for the existence of real solutions for 6 in (8) are the following:}
8y = ol (P, + V25 (n = 1)), G
Bps = 1V 25, (n = 1). 1o

It should be noted that from (7) we can obtain other relations for 6« and 8« (analogous to those given in [8])
if we sety =1 in formula (7). The results ebtained are less accurate and more sensitive to the choice of the
approximate temperature profile,

We shall illustrate the accuracy of the results obtained in the most unfavorable case Bi — o w1
(as Bi decreases, the accuracy of the calculation increases rapidly). The results for ¢ =1, compared with
the exact results of [1], are shown in Table 1, The error in the determination of 6« does not exceed 5%,

2. Critical conditions for £¢) 1. The solution of problem (1), (2), with ¢(¢) = const, yields the follow-
ing form of the trial profile:

0=0,[1 —ap ), 11
where

0O = [ (4 () dr, o= Bil(1 - Biw (D).

TThis method for averaging the heat flux is not the only one possible.
1 This determination of the critical conditions is equivalent to using the condition of strong parametric de-
pendence d6/dé, = 0,
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TABLE 2, Critical Values of 6« for Different Values of A and Bi

Bi==10 . Bi=100 [ Bi=1000 -
A pecording | calculated |according | calculated Iaccm:di.ng calculated
to(12) - | @)=(3) to (12) (1)=(3) to (12) (1)~(3)
20 3,98 4,9 7.5 | 6,9 8,51 8,49
50 5,37 5,25 11,22 10,96 15,85 14,45
80 5,62 5,89 14,12 13,49 22,39 20,41

After performing some simple calculations according to the above scheme, we obtain (seftingn = 1)
8 = ay/(3yDy + V 20,), az)
8o = 1/1/ 6y (13)
where
; ¥
={dy | Ell—ayp @ &,
0 ]
! y
{dv | Ell—ayp®F &
Q

[

D,
D,

As an example, let us consider the critical conditions for ignition when a reactive gas flows in a turbu-
lent regime through a long tube. The presence of a turbulent component of heat transfer makes the effective
thermal diffusivity nonuniform. The simplest function f{) can be obtained by using Nikuradze's experiments
[10]:

fE&=1+A4(1-—7),
where A = 0.026Re7/8.

The variation of 6,(A) when Bi takes on different values is shown in Table 2. Formula (12) accurately
reflects the qualitative property of attenuation of the function 6,(A) as A increases, since as the turbulent
transfer becomes more intensive, the effective temperature resistance of the reaction zone decreases, and
the heat transfer is limited essentially by the thermal resistance of the wall,

There is good qualitative and quantitative agreement with the calculations of the initial problem (1)-(3)
on computers, carried out in [11], Attempts to use functions other than (1) as the trial functions (e. g., the
parabola (5), for reasons of simplicity) lead not only to a loss of accuracy but also to an incorrect qualitative
picture for large values of A,

Calculation of 64 from (13), taking account of (14), indicates that 8,(A) depends weakly on A (which is also
confirmed by computer calculations performed in [11]). This justifies the use of the Gray —Harper approxima-
tion [9] and enables us to disregard in the ignition problem the effect of temperature pulsations on the heat-
generation function (unlike the combustion regimes of [12]).

Thus, the method of integral relations can prove to be an effective method for finding the critical param-
eters of a thermal explosion in a system when the variability of the temperature field is essential. The limita-
tions of the method lie largely in the possibility of representing the solution of the thermal problem for a con-
stant source in a simple form. A conspicuous shortcoming of the method is that it is not clear whether the
estimates obtained lie above or below the exact values. ' '
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OCCURRENCE OF FREE CONVECTION IN A PLANE
LAYER IN THE PRESENCE OF A CHEMICAL
TRANSPORT REACTION

L. V. Sotnichenko and K, A. Shtessel! UDC 536.25

We consider the conditions for the occurrence of natural convection when a volatile compound
is transported through a gaseous phase as a result of a chemical reaction with a solid sub-
stance, We determine the variation of the critical Rayleigh number for the principal level of
instability as a function of the parameters of the process.

In an infinite plane horizontal gaseous layer with solid boundaries we are given thermal boundary condi-
tions of the first kind, On both of the boundaries there takes place a heterogeneous reversible exothermic
reaction of the type VAA +vgS == vgB; Aistheinitial gas; S, solid material of the wall; B, gaseous reaction
product; va, Vs, vB, stoichiometric coefficients. The mixture of gases in the layer may be considered
binary, since the reaction takes place in a heterogeneous manner and the vapor pressure of the solid ma-
terial is negligibly small. For T; > T, (Fig. 1), since the reaction is exothermic, the thermodynamic
equilibrium is shifted in such a way that the rate of the direct reaction, and consequently the gas flow rate
A, on surface I will be less than on surface II. For the reaction product B the situation is reversed. The
difference in concentrations gives rise to flows of the components caused by diffusion and convection. If
the solid material of the surface takes part in the reaction, there will be mass Stefan flow in the system.

In stationary conditions, the presence of Stefan flow is analogous to blowing into the system at a constant
velocity. For the given conditions, there may be thermal and concentration nonuniformities in density in
the mixture of gases. We write the concentration of the light component as PA/P = ¢, and the density of the

mixture as p = [a -+ (s —ps)cl, s, up being the molecular masses of the components, Following [1], we

P
RT
shall assume that the density of the mixture admits of a linear expansion with respect to the average values of
T and c, i.e., p=p,(1—B;T" —B,c’), where T' and ¢' are the deviations from the average values;

p_-—__l_ %\ . gz_l_(_a_p_\)
! 0o ( aT P,c’ 2 Po ac/P»T

We write the equations of free convection of the mixture, considering it incompressible [11. If should
be noted that v = v, + v, is the total hydrodynamic velocity; v is the convective velocity; v, is the Stefan veloc-
ity corresponding to the average density p,,.

Disregarding thermal diffusion and diffusive heat conduction in the heat and mass flows and assuming
that the nonuniformity in density is essential only in the expression for the lifting force (the Boussinesq ap-
proximation), we obtain a system of equations,
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